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Abstract The relative structural stabilily of s- and sp-valent systems is examkd wiihin the 
founh-moment approximation to the recently derived tight binding bond orderpotentials. At this 
low level of approximation we find that the application of a sum rule mnsmint to the choice 
of terminator is necessary to get gwd results. In particular. the mpetit ion between gmphite, 
diamond and simple cubic sp-valent latrics is modelled well by the new angularly dependent 
bond order potentials. 

1. Introduction 

Atomistic modelling has become an important and increasingly popular tool in modem 
materials science (Vitek and Srolovitz 1989, Daw and Schliiter 1990) . However, atomistic 
modelling relies on the availability of simple. yet realistic interatomic potentials. In the last 
few years we have seen rapid progress in the development of semiempirical many-body 
potentials, the simplest of which are the embedded atom potentials (Daw and Baskes 1984, 
Finnis and Sinclair 1984). Embedded atom potentials are applicable to simple metals and 
noble metals, but have had only limited success in describing the BCC transition metals 
and fail to describe the bonding in semiconductors. The modelling of the open structures 
of semiconducfors requires the inclusion of explicit three-body terms (Stillinger and Weber 
1985, Tersoff 1988. Baskes et of 1989). the forms of which have usually been chosen 
empirically and fitted to some bulk and cluster properties. 

In contrast. the recently proposed bond order potentials, which will be introduced in 
more detail below, allow us to derive the form and angular character of the potentials from 
tight binding (TB) Huckel theory (Pettifor 1989, Pettifor 1990). The bond order potentials 
are based on the embedding of a bond (rather than an atom) in its environment and can be 
expressed as an exact many-atom expansion (Aoki and Pettifor 1993). Bond order potentials 
therefore seem capable of describing not just a small section of the periodic table, but the 
whole range of covalently bonded sp- and sd-valent systems. 

In this paper we study the properties of the bond order potentials for s- and sp-valent 
systems. In section 2 we introduce the concept of the bond order and show in section 3 that 
it may be expressed as an exact many-atom expansion. In section 4 we present a recently 
derived sum rule, which gives us an explicit criterion for the termination of the many-atom 

1 Resent address: Max-Planck-lnstitut fiir Metallbrschung, Instilut fdr Werkstoffwissenschah Seeshaw 92, 
70174 Stutlgan. Federal Republic of Germany. 
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expansion. In sections 5 and 6 we compare the relative structural stability of some s- and 
sp-bonded systems within the symmetric fourth moment approximation (SFMA). In section 7 
we conclude. 

2. The bond order 

Within the tight binding bond model (Sutton et a1 1988) the total binding energy per atom 
for a sp-valent system is written as 

(1) 
where (Irep is a semi-empirical painvise repulsive contribution, Upm, is the promotion energy 
which represents the energy penalty incurred in changing the s- and p-occupancy on band 
formation, and U- is the covalent bond energy. The bond energy results from evaluating 
the lncal density of states n"(E) associated with orbital a on site i within the two-centre, 
orthogonal 1'8 approximation: 

utot = u m p  + upm f ubnd 

where N is the number of atoms in the system, E" is the energy level of orbital (Y on 
site i and EF is the Fermi energy. The prefactor 2 accounts for the spin degeneracy in 
the non-magnetic systems considered in this paper. We usually refer to ( 2 )  as the central- 
site description of the bond energy. (The importance of using the bond energy rather than 
the hand energy within semi-empirical schemes is discussed in detail by Pettifor (1990).) 
Alternatively, using the definition of the Greenian 

( E -  H ) G  = 1 (3) 
and defining the Green function as the matrix element of the Greenian with respect to atomic 
orbitals lis) (a = s, z, x ,  y). we have 

Hence, identifying the imaginary part of the Green function with the density of states, we 
can rewrite (2) in terms of the individual bond energies (Sutton et al 1988, Finnis et a1 
1988). namely 

that is 

where 3 stands for the imaginary part and GIPiu = (# / (E - H)- ' l ia ) .  
The inter-site description of the bond energy (6). is particularly transparent. It describes 

the covalent bond energy between a given pair of atoms i and j as the product of the Slater 
and Koster (1954) two centre energy integral matrix elements Hiaj$ = (iarlHljj3) and the 
bond order matrix @piu. The bond order itself gives the difference (N+- N-) between the 
number of electrons projected onto the bonding A l i a  + j,9) and anti-bonding hlia - j s )  
states. We note that with this definition of bonding I anti-bonding states the pz orbitals on 



A study of s- and sp-valent systems 5797 

sites i and j must be taken as liz) and -1 j z ) ,  respectively when the z axis is along Ri,. The 
matrix HfQ1fl is then symmetric. Although (6) gives the bond energy in terms of individual 
pairs of atoms, it is important to realize that it is not pairwise since the bond order itself 
depends upon the local many-atom environment 

Part of the sum in (6) is a trace with respect to the orbital indices (a, b). This can be 
simplified by changing the basis through a unitary transformation which diagonalizes HiUip. 
Assuming that the spu bond integral is describable by the geometric mean of IssuI and ppu, 
the 2x2 U block of the intersite Hamiltonian may be diagonalized with diagonal elements 
of - ( l ssu  + ppu) and zero, respectively (Pettifor 1990). The corresponding hybrid basis 
function associated with atom i are 

whereas the basis function for atom j are 

and 

- 
We see that 

(iulHlju) = -(lswl +ppu) (11) 

(iuoIHlju0) = 0 (12) 

and the off diagonal matrix elements vanish. Equation (6) therefore reduces to the following 
simple form (Pettifor and Aoki 1992) 

(13) 

where 0'""' is the bond order between hybrid orbitals liu) and lju). The bond order for 
the n bond is given by @inin = (1/2)(@jxix + @jYiY). 

U& =.-2(lssol + ppu)ij@jcfc -4(ppn)ij@jz'" 

I 0 bond I 

x bond I Figure 1. The U and H orbitals for two sp-valent atoms i and j .  
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Figure 1 displays schematically the U and j7 orbitals for two sp-valent atoms i and j. 
The U orbitals can be thought of as a generalization of the familiar sp3-hybrid orbital to 
which they reduce for the special case of pa = p p u / [ w l  = 3. We note that the above 
hybrid orbitals are independent of the environment about the bond. For spcr = &- 
they represent an exact transformation of (6) into the more transparent form of (13). 

The bond order. which is given by the difference between the number of electrons in 
bonding and anti-bonding states, can be written as 

@ ' ~ ( E F )  = N+ - N- = ---3 [G&(E) - G&(E)]  dE (14) 
j7 jEF 

where for simplicity the orbital labels have been left out. The bonding and anti-bonding 
Green functions can be written as a continued fraction (Haydock et al 1972, Haydock 1980), 
namely 

(15) 
1 

(b:)* 
G&(E) = ( u t l ( E  - H) - '~u: )  = * E - a ,  - 

(b:)' 
E - %* - ... E - a ,  - 

where [U:) = -&iu f is). The coefficients are determined by the Lanczos algorithm, 
namely 

(16) 
with the boundary condition that lu!,) = 0. The dependence of the recursion coefficients 
on the local atomic environment about the bond i j  can be found by using the well known 
relationship between the recursion coefficients and the moments (see for example Pettifor 
and Aoki (1991). equations (2.10)-(215)). 

* *  * i  b$+,Iu$+J = Hlu~)--a, lu,)--6,1u,- l )  

3. The many atom expansion 

Recently Aoki and Pettifor (1993) have shown that the bond order can be written as an eMct 
many-atom expansion. They considered acting with the Lanczos algorithm on the starting 
orbital lui) = ( l i )  + e"lj))/fi where 0 = cos-' A. The corresponding Green function 

(17) 
can, therefore, be written as a continued fraction like (15) with recursion coefficients a; 
and bt. It follows from (17) that G&, is linear with respect to A so that 

G&(E) = (U;[(.!? - H)- ' ]u;)  = G&(E)+AG'j(E) 

where 

Sa, = (dat/dA)o and abn = (db;/dA)o (19) 
with (...)o denoting A = 0. 

In this paper we will consider only those structures which have even-membered rings 
so that all odd moments vanish provided we take the sp energy separation ESP to be zero. 
This implies that abn = 0 (see equations (22x25) of Aoki and Pettifor 1993). Substituting 
(18) in (5) and keeping only sufficient terms in the expansion to guarantee up to the correct 
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fourthmoment p4 (cf section 3.2 of Aoki er a1 1993a). the bond order for a particular bond 
is given by 

(20) @(EF) = -2 [ X 2 ( E F ) b  + X4(EF)[<p - <;/(by)21] 

where the response functions x & + z ( E ~ )  are defined by 

(21) 

and 52 = Sao and (<Fg -&/(by)' = Sal. Analytic expressions for xz and x4 are given in 
the appendix within the SFMA. 1;2 corresponds to the appropriate bond integral (ialHlju) 
and {Tc is the corresponding four-atom ring contribution which for spvalent systems has 
been given explicity by equations (50) and (52) of Pettifor and Aoki (1992). The coefficient 
hp equals h:" and is given by the average second moment about sites i and j ,  namely 

I 
XZ~+Z(EF) = 2 / Gh(E)G,o(E) dE ' 

(bel2 ._ . = p2 = f[(ilH21i) + (jlH21i)l. .\ (22) 

4. A sum rule 

The truncation of the many- atom^ expansion after just the first few terms may result in 
the violation of (4) which gives the relation between the on-site Green function Giaim 
and intersite Green functions Gjfiie. On making the above truncation, therefore, we will 
constrain our choice of terminator (represented by the unknown coefficients a, and b- in 
the square root terminator that enters in the response functions in the appendix) so that the 
identity is maintained for the particular choice of energy E = Eiu (Aoki et a1 1993% b), 
namely 

(23) 

This guarantees that the number of electrons Niu is calculated consistently within the 
approximations made. By taking the imaginary part of (4) we find that the local density of 
states for an orbital on atom i can be expressed in terms of the intersite Green functions as 

1 + C HiajPGjPi@@a +io) = 0. 
j P . i # i  

must be fulfilled in order to avoid an unphysical singularity in nia(E)  at E = E" which 
would bring a logarithmic singularity in the number of electrons Niu as a function of the 
Fermi level EF. Equation (25) constitutes the imaginary part of (23). Since the integration 
of n"(E) up to infinity must give unity, namely 
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where 3 stands for the real part and this constitutes the real part of (23). 
If we assume that the atomic energy levels are orbital independent (corresponding to 

E,, = 0). then we find from a similar argument with respect to the total number of electrons 
on atom i that the sum rule may be written 

where E" has been taken as the energy zero. It should be noted that this formula is invariant 
under the rotation of the quantization axes (or unitary transformation) for local orbitals a 
and ,3 on each pair of atoms i and j .  Therefore, choosing the orbitals such that I f i a j B  is 
diagonalized, the sum rule takes the form of 

a j m . j # i  
(io) = 0. (29) 

By taking the real and imaginary part of (29) we can make use of this sum rule to fix the 
two parameters a, and b, in the square root terminator to the approximate intersite Green 
functions: ' 

1 + HimjaGjuia 

For a system of identical s-valent atoms, the sum rule simplifies to 

1 + HiiGii(iO) = 0 (30) 

For structures with no odd-member rings the truncated intersite Green function automatically 
fulfils the imaginary part of the sum rule (30) as 3Cij(iO) = 0 by symme!q of the bonding 
and anti-bonding density of states; only the real part remains to be fulfilled. 

j# i  

5. s-valent systems 

In this section we use the sum rule to study simple s-bonded smctures with even membered 
rings only. We use the square root terminator with b; = b! = ... = 6,. Substitution of 
(18) into the sum rule (27) requires the following terms: 

IH[Gm(O)Gm(O)] = -b2/(by)4 (31) 

!R[G&(O)GlO(O)] = 0 (32) 

WGoi(O)Gio(O)l= 1/(b?)' (33) 
which have been evaluated using some simple algebra within the SFMA (Aoki et al 1993b). 
The sum rule, therefore, takes the form 

where the individual'terms inside the sum are dependent on the particular bond i j .  For the 
case of s orbitals on a lattice where all sites are equivalent (34) is satisfied for 

The right-hand side of this equation, however, is simply (b!)2 w h m  b; is the recursion 
coefficient b;'O which may be defined (Pettifor and Aoki 1991) in terms of the e m t  average 
second and fourth moments, namely 
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Thus the sum rule implies that we must choose our terminator so that b, = b; where b: 
is the exact recursion coefficient b$='. At this fourth-moment level of approximation we 
include in the average Green function information about the shape of the band, because 
(b;/by)2 is a measure of the ratio of the fourth and the second moments of the density of 
states. As (h:/b:)* becomes larger than unity the band develops a distinct maximum at 
its centre. If b: equals bp we have a semi-elliptic band and as (bg/bY)2 becomes smaller 
than unity a pseudo-gap develops in the centre of the band.and increasingly more weight is 
pushed towards the band edges. At (!$/by)' = f the band has a singularity at the band edge 
and below this value &functions occur outside the continuum band of states. In the most 
extreme case. when b: vanishes, as for the dimer, the continuum band of states vanishes 
and we are left with the two &functions. 

We now apply the bond order potentials to study a few simple s-bonded structures with 
only even membered rings. The structures we investigate are: the dimer, the linear chain, 
the diamond lattice, the two-dimensional square lattice, the simple cubic lattice and the BCC 
lattice. Within the fourth-moment approximation and with only nearest-neighbour hopping 
it follows from equations (6) and (20) that the normalized bond energy per atom for the 
above s-valent lattices can be written 

Ubo"/bY = ( i & / h f ,  Nn) + i db : /b f ,  No)[(bz/bI) - 11). (37) 0 0 2  

1.2 

1.0 

0.6 

0.4 
0 1 8 3 

f bo* /a",)* 
Figure 2. The normalized bond energy Venus the normalized founh momen1 for different 
approximations within the s-valent bond order polenlids for a half-full band. The dotted, solid 
and dashed lines compond 10 evaluating the normalized response functions with the consant 
value of h; fh: = 0.5. 1 and 2. respectively whereas the open diamonds use the com strwure 
dependent value of b!fhy. The solid squares give ule exact TB results from Brown and Carlsson 
(1985). In this and the following figure the leuerJ indicate the stnrcture: (a) dimer, (b) linear 
chain. (c) diamond structure. (d) lwo-dimensional square lattice. (e) simple cubic Srmchlre and 
(g) body-cenued cubic lallice. 

The reduced susceptibilities i h + z  = Ib:l,yzn+z are functions only of (b:/b?) and the 
fractional occupancy of the band N,, since the terminator b, has been chosen equal to b$' 
in order IO satisfy the sum rule, (30). Note that (by)' = f i 2  and (b$/b:)' = w/fi; - 1 from 
equations (22) and (36). Figure 2 displays the dependence of the normalized bond energy 
per atom Ubond/bY on the normalized fourth moment (b$/bY)' for the case of a half-full band 
with N, = 0.5. Such a figure was first constructed by Brown and Carlsson (1985) whose 
exact values for the TB bond energies for the different lattices are indicated by the solid 
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squares. The three lines in figure 2 show the linear dependence to be expected from (37) 
if the reduced susceptibilities are assumed to be structure independent by taking i z  and 24 
as constants. The particular choices (bi/b:)* = 0.5, 1.0 and 2.0 have been plotted. Using 
the correct values of h:lby in the response functions (the diamond symbols in figure 2) 
gives excellent bond energies for the different structures considered Moreover, we find 
that truncating the intersite many-atom expansion at the fourth moment and using the sum 
rule to fix b, gives the same results as the central site method taken to the fourth-moment 
level of Brown and Carlson (1985) (Aoki et a1 1993b). Within the SFMA the exuct TB results 
are obtained for the diatomic molecule and the linear chain. Figure 3 demonstrates that this 
convergence of the bond order potential (BOP) expansion is equally good for band fillings 
away from half-full, notably N, = 0.1,0.2 and 0.3. 

Ibo,,@ty 
Figure 3. The nonnalized bond energy vmus the n m a l i l e d  fourth-moment for different band 
fillings for rvalent systems. The exact 78 resulls are taken from Brown and Carlsson (1985). 

Finally, we have studied the behaviour of the BOP as compared to the central-site 
recursion method with respect to defect formation. We do this by evaluating the formation 
energies for the creation of a vacancy or a surface in some of the structures analysed above. 
The bond energy contribution to the formation energy is defined as the difference between 
the bond energy of the defected structure and the bond energy of a perfect structure with 
the same number of atoms. Figure 4 shows the bond energy contributions to the defect 
formation energies normalized by the magnitude of the nearest-neighbour hopping integral 
h for a half-full band and for a band filling of N, = 0.3. The very satisfactory agreement 
between the two methods is also found for other band fillings. 

6. sp-valent systems 

In this section we study the structural stability of sp-valent systems with respect to the 
simple cubic, diamond and two-dimensional graphite structures. All these structures have 
no odd member rings which implies that the density of states is symmetric if we assume 
zero sp splitting, namely ESP = 0. 

The choice of the coefficients in the terminator is determined by the sum rule as follows. 
Since the U and n bands have the same width we take b z  = b c  = b,. Keeping only 
by and by in the response functions and choosing all remaining recursion coefficients 
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0.8 

.e & 0.6 

0.4 

0.2 

0.0 
A B C  D E  F C H  A B C  D E  F G H  

Figure 4. The normalized defect energies of s-valent systems with h=-sso as calculated from 
the BOP (solid rectangles) and from the central site recwsion method (open rectangles) for 
difierent band fillings The leners indicale the following defects: A the vacancy. B the (10) 
surface and C the (U) surface in the two-dimensional square latti&: D the vacancy and E the 
(100) suriace in the diamond smcture: F ule vacancy, G the (100) surface and H the (110) 
surface in the simple cubic swcture. 

&pal to h, would lead to a value of b, much smaller than bp” atid bp.” when the sum 
rule is applied. This gives non-physical delta functions outside the band edges. Therefore, 
in order to avoid this we have chosen the square mot terminator through b y  =by = & 
and by = b y  = hp = by = . . . = b,  where b, takes the form (Aoki 1993) 

(38) 
The average 61 is chosen as that value of b, which satisfies the sum rule if the many-atom 
expansion is truncated after the first term and the response function xz has all recursion 
coefficients equal. It is given by 

where z is the n m t  neighbours or coordination number. 6 2  is then found by satisfying 
the sum rule within the SFMA, namely 

.~ 
b; = (6: + 6 3 / 2 .  

(39) 0 0  4 ~ n 2 60.’ 4 i? = (4/z)/[(52”)2/(bl’ ) +2(32 /( I ) ] 

This leads to 

where 

p 2 - - ( -B+(BZ-4AC)”’) / (2A)  (41) 

(42) 
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and 
C = Bh;. 

Therefore, the SFMA requires the calculation of the second moments entering by and the 
evaluation of all four of the four-member rings around a given bond. This calculation is 
a particularly simple task for diamond and graphite structures since both structures do not 
have any four-member rings within the nearest-neighbour approximation. 

We now compare the results obtained within the SFMA when the sum rule is satisfied, 
with that when it is not applied, and compare both to more accurate results which 
we have obtained by retaining 20 exact levels around a given bond in the continued 
fraction, equation (15). We have taken Chadi's values of ps = ppu/lssul = 1.5738 and 
pn = Ipprrl/lssul = 0.5547 (Chadi 1979). Following Cressoni and Pettifor (1991) the U 
and rr bond integrals are assumed to display the same functional dependence on interatomic 
distance, namely 

where Rij is the distance between the two atoms i and j .  For lattices considered here where 
all neighbour bonds are equal in length the coefficient b; takes a particularly simple form. 
For the U bond between the hybrid orbitals lio) and I j o )  we have (Pettifor 1990) 

(@"/2;)' = 1 + &(@k) (46) 
W i . j  

where k is a nearest neighbour to atom i, 0, is the corresponding bond angle and 
<; = -(I + p,,)h(Rjj). The embedding function is given by 

g,,(e) = ( I  +p , , c~se )~ / (~  + p u ) Z + p , p ~ s i n 2 8 / ( 1 + p u ) 3 .  (47) 

(hp"'/<;,' = Rm,(ek)  (4) 
Similarly for the non-bonding U state between the hybrid orbitals [iuo) and I jao) we have 

k#i.j 

with 

For the rr bond we have 

where 

g n ( e j ) =  ~ ~ ( p , / p 2 ~ ) ( i + p U ) s i n Z e + ( i + c o s Z e ) ~  (51) 
and <; = -pnh(Rj j ) .  

Figure 5 illustrates the angular dependence of the embedding function go(@) and gn(6'). 
The pure s bond corresponds to pn=O and displays no angular dependence. The pure p bond 
corresponds to vanishing sw. We see that go(@) falls to zero for a bond angle 90" for the 
case pn = 0 since then there will be no coupling to neighbouring atoms at right angles to 
the bond. The sp hybrid bond displays very small values when 0 becomes larger than about 
100". For Chadi's parameters it has a minimum around 130' as expected from the behaviour 
of the hybrid orbitals, shown in figure I ,  which have very little weight in this direction. 
Therefore graphite and diamond lattices with bond angles of 120" and 109". respectively 



A study of s- and sp-valent systems 5805 

1.0 

0.5 
so(@ 

0.0 

8 1  

0- 
0 90 

Band Angle (9) 
0 

Figure 5. The angular dependence of the embedding functions g,(Q and the g,(B). The 
normalized semiempirical Tersbff (1988) cuwe is also shown 

will have nearly saturufed U bands with bond orders close to unity for a half-full band. In 
contrast the angular dependence of the R bond leads to unsaturated behaviour, as can be 
seen in figure 5, since gn (8) rises to a value much larger than that for angularly independent 
s orbitals. We see that the angular dependence of sa@) is very similar to that displayed by 
the semi-empirical potential of Tersoff (1988) (see Pettifor and Aoki 1992). Table 1 gives 
the normalized sp valent recursion coefficients calculated for the three structures diamond, 
graphite and simple cubic. The values of and the ratio of (&/by)  are also included. 
As expected, table 1 shows that the normalized recursion coefficients by/c; are very small 
for the graphite and diamond lattices whereas the normalized by/<; take a large value in 
all structures. 

Table 1. The normalized sp-valent recursion coefficients for the three shctures diamond, 
graphite and simple cubic. 

Smaure by/<; i& p a  & fbp 
Diamond 1.0854 0.7344 0.00 0.677 
Graphite 1.0277 0.7380 0.00 0.718 
sc 1.3293 1.2810 -6.81h3(Rti) 0964 

Structure by/%; hfc;  cp." %/by 
Diamond 4.4966 3.407 0.W 0.758 
Graphite 3A818 3.424 0.00 0.983 
sc 5.5072 5.9442 -6.Z4k3(Rij) 1.079 

Suucfllre ' by/<," &I<," <ps'q &fbp." 

Diamond 1.1468 0.7344 0.00 0.640 
Graphite 1.0469 0.7380 0.00 0.705 
sc 1.4045 1.2810 -2.62h3(Ri;) 0.912 

Figure 6 illustrates the reduced response functions ,& and f4  as a function of the number 
of electrons per atom in the appropriate U and R orbitals for the diamond, graphite and 
simple cubic structures within the SFMA when the sum rule is satisfied. 
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Figure 6. The reduced response functions fi  and as a function of the number of elect" 
per atam in the appropriate 0 and n orbitals for the spvalent diamond, graphite and simple 
cubic lanices wilhin the SFMA when the sum rule is satisfied. 

Figure 7 illustrates the corresponding bond order from (20). The left-hand panels 
correspond to evaluating the response functions when the sum rule is not applied by using 
by = hp = ... = bm, whereas the middle panels correspond to choosing the terminator in 
order to satisfy the sum rule. The right-hand panels exhibit the results obtained within the 
intersite method (IS), calculated with 20 exact levels about the bond i j .  The SFMA predicts 
a negative U bond order in small regions at the start and end of the band filling. This is 
due to the truncation of the many atom expansion. It should be noted that the oscillations 
in the lower right hand panel for 0, for diamond and graphite lattices are probably due 
to using the simple square root terminator rather than the sophisticated Turchi terminator 
appropriate for densities of states with a gap (Turchi et uf 1982) . We see that, as expected, 
for a half-full band the U bond order for graphite and diamond is nearly unity whereas that 
for the I? bond is much less than unity. 

Figure 8 displays the density of states for diamond, graphite and simple cubic lattices 
using the integrand in (55) within the SFMA when the sum rule is not applied (left-hand 
panels) and when the sum rule is satisfied (right-hand panels). The ratio (&/b:) determines 
the shape of the density of states. When this ratio is less than unity, for example in case of 
the U bond in the diamond and graphite structure, there is bimodal behaviour. As (&/b:) 
approaches unity the bimodal behaviour disappears, as can be seen for the U bond in the 
simple cubic lattice (cf table I). In the left-hand panels (&/by) = 1 for all structures so 
that all structures have semi-elliptic bands. 

The relative structural stability of simple cubic, diamond and graphite lattices was 
predicted using the structural energy difference theorem (Pettifor 1986). This states that to 
the first order 
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= [AubmdlAU,=O (52) 

where AU,,=O signifies that the bond lengths in each structure have been adjusted so 
that the change in the repulsive energy from one structure to another is zero. The 
repulsive energy is taken to be proportional to h2(Rij) .  This assumption allows us to write. 
AU = [AUb.&,,,a where pz is the second moment of the density of states (see Pettifor 
and Podloucky 1984, Cressoni and Pettifor 1991). Thus we set the second moment of the 
density of states for each structure to be the same. Within the first nearest-neighbour mcdel 
this implies that 6 / 1 ’ ( R i j ) ~  = 4h2(Rij)da = 3 / ~ * ( R i j ) ~  We take h(R;j)= = -ssu3, = 1. 

Figure 9 displays the U and K bond energies as a function of the total number of 
electrons per atom within the SFMA when sum rule is not applied (left-hand panels) and 
when it is satisfied (right-hand panels). It can be Seen that the U bond energy is much larger 
than the IT bond energy. 

Figure 10 shows the relative structural trends between graphite, diamond and simple 
cubic lattices within the SFMA when the sum rule is not applied (left-hand panel), when it 
is satisfied (middle panel) and within the intersite method calculated with 20 exact levels 
(right-hand panel). All these calculations show the same structural trend, namely, in the 
half full band region diamond is the most stable structure, whereas with increasing band 
filling graphite and then simple cubic become more stable. This is to be expected within 
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the fourth-moment approximation as has been argued by Cressoni and Pettifor (1991) who 
also considered other structure types in their detailed comparison of TB predictions with 
experimental stluctural trends across the sp-valent elements in the periodic table. We see 
from figure IO that for half-full bands the SFMA predicts a band energy that is within 2% 
of the converged result when the sum rule is satisfied, whereas not applying the sum rule 
leads to a much poorer result with 13% enor. 

7. Conclusions 

We have examined the relative structural stability of s- and sp-valent lattices using the 
bond order potentials within the SFMA. We have shown that the results of the SFMA with 
the sum rule satisfied are comparable with accurate TB results and predict the expected 
structural trend from simple cubic -P graphite -+ diamond -+ graphite -P simple cubic 
as a function of the band filling if the relative stability of only these three structure types 
is considered. We are currently extending these calculations to mating the E,, # 0 case 
when the asymmetry of the response functions needs to be included. This will allow a more 
realistic modelling of sp-valent systems such as carbon and silicon. 
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Appendix 

Aoki (1991) has derived analytic expressions for the response functions. Within the SFMA 
x2 and x4 are given by 
x2(&F) = ( B : B : / 3 2 k ~ ) [ $ ( l  - B:)'3(&F) + &(BfB:/2 - s: f Bi)uI(EF)] (53) 

(54) X4(6'F) = (b:&/32hmn)I;(l -&2)'3(€~) - (~:/I~)'I(&F)] 
where E = E/2h, and p. = h:/hm and the recursion coefficients bn have been chosen to 
be negative. The number of valence electrons per spin per atom, N ( 2  l), is in the fonn 

where 
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