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Abstract, The relative structural stability of s- and sp-valent systers is examined within the
fourth-moment approximation to the recently derived tight binding bond order potentials. At this
low level of approximation we find that the application of a sum rule constraint to the choice
of terminator is necessary to get good results. In particular, the competition between graphite,
diamond and simple cubic sp-valent lattices is modelled well by the new angularly dependent
bond order potentials.

1. Introduction

Atomistic modelling has become an important and increasingly popular tool in modem
materials science (Vitek and Srolovitz 1989, Daw and Schliiter 1990) . However, atomistic
modelling relies on the availability of simple, yet realistic interatomic potentials. In the last
few years we have seen rapid progress in the development of semi-empirical many-body
potentials, the simplest of which are the embedded atom potentials (Daw and Baskes 1984,
Finnis and Sinclair 1984). Embedded atom potentials are applicable to simple metals and
noble metals, but have had only limited success in describing the BCC transition metals
and fail to describe the bonding in semiconductors. The modelling of the open structures
of semiconductors requires the inclusion of explicit three-body terms (Stillinger and Weber
1985, Tersoff 1988, Baskes et al 1989), the forms of which have usually been chosen
empirically and fitted to some bulk and cluster properties.

In contrast, the recently proposed bond order potentials, which will be introduced in
more detail below, allow us to derive the form and angular character of the potentials from
tight binding (TB) Hiickel theory (Pettifor 1989, Pettifor 1990). The bond order potentials
are based on the embedding of a bond (rather than an atom) in its environment and can be
expressed as an exact many-atom expansion (Aoki and Pettifor 1993). Bond order potentials
therefore seem capable of describing not just a small section of the periodic table, but the
whole range of covalently bonded sp- and sd-valent systems.

In this paper we study the properties of the bond order potentials for s- and sp-valent
systems. In section 2 we introduce the concept of the bond order and show in section 3 that
it may be expressed as an exact many-atom expansion. In section 4 we present a recently
- derived sum rule, which gives us an explicit criterion for the termination of the many-atom
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expansion. In sections 5 and 6 we compare the relative structural stability of some s- and
sp-bonded systems within the symmetric fourth moment approximation (SFMA). In section 7
we conclude.

2. The bond order

Within the tight binding bond model (Sutton et af 1988) the total binding energy per atom
for a sp-valent system is written as

Uit = Urep + Upmm + Usona (h

where Uy is a semi-empirical pairwise repulsive contribution, Uprm is the promotion energy
which represents the energy penalty incurred in changing the s- and p-occupancy on band
formation, and {pong is the covalent bond energy. The bond energy resuits from evaluating
the local density of states n’®(E) associated with orbital & on site / within the two-centre,
orthogonal TB approximation:

Er
Ubond = Zz N f (E — E)n’*(E) dE 2)
foe

where N is the number of atoms in the system, £°® is the energy level of orbital @ on
site { and Ef is the Fermi energy. The prefactor 2 accounts for the spin degeneracy in
the non-magnetic systems considered in this paper. We usuaily refer to (2) as the central-
site description of the bond energy. (The importance of using the bond energy rather than
the hand energy within semi-empirical schemes is discussed in detail by Pettifor (1990).)
Alternatively, using the definition of the Greenian

(E—-H)YG=1 . 3
and defining the Green function as the matrix element of the Greenian with respect to atomic
orbitals lia) (¢ = s, z, x, ¥), we have

(E— E®)G™™ =14 3 HP G, @

"B
Hence, identifying the imaginary part of the Green function with the density of states, we

can rewrite (2) in terms of the individual bond energies (Sutton ef a! 1988, Finnis er al
1988), namely

) . EF e T
Ubond = %J\r-l ZUI:md = Z 2 N7 1HBy f Gi#e gE (5)
i iajf.i#]
that is
-t i oy i
Ubond = 5»N 3 2HEgite (6)

fajB.igf

where 3 stands for the imaginary part and G/%¢ = (jB|(E — H) lia).

The inter-site description of the bond energy (6), is particularly transparent. It describes
the covalent bond energy between a given pair of atoms i and j as the product of the Slater
and Koster (1954) two centre energy integral matrix elements H'%# = (io|H|jB8) and the
bond order matrix @/#®, The bond order itself gives the difference (N+ — N~) between the
number of electrons projected onto the bonding 7‘;]:‘& + jB} and anti-bonding ':}‘5["“ - JjB}
states. We note that with this definition of bonding / anti-bonding states the p, orbitals on
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sites { and j must be taken as iz} and —|jz), respectively when the z axis is along R;;. The
matrix H/# js then symmetric. Although (6) gives the bond energy in terms of individual
pairs of atoms, it is important to realize that it is not pairwise since the bond order itself
depends upon the local many-atom environment.

Part of the sum in (6) is a trace with respect to the orbital indices (, 8). This can be
‘simplified by changing the basis through 2 unitary transformation which diagonalizes H'®/#.
Assuming that the spe bond integral is describable by the geometric mean of |sso| and ppo,
the 2x2 & block of the intersite Hamiltonian may be diagonalized with diagonal elements
of —(|sso| + ppe) and zero, respectively (Pettifor 1990). The corresponding hybrid basis
function associated with atom { are

lig) = (\/ lssoilis) + /Ppo iiz)) /+/ s | 4+ ppo 0]
and

liow) = (/B85 lis) — vIssaTliz}} /v/IssoT + ppo ®

whereas the basis function for atom j are

ljo) = (VIssallis) — BB Lj2)) /+/Iss0T + ppo ®

and
Ljoo) = (VFBo Ljs) +/IssaT 1)) /v/soT + ppor. o
We see that
’ iolHjo) = —(sso| +ppo) an
{fog|H|jog) =0 : (12)

and the off diagonal matrix elements vanish. Equation (6) therefore reduces to the following
simple form (Pettifor and Aoki 1992)

q;{;n ¢ = —2(Isso| + ppo)i; @i — a(ppxr )ij emir (13)

where ©/7* is the bond order between hybrid orbitals |io) and [jo). The bond order for
the = bond is given by @/7" = (1/2(@/%* 4 @),

E bond Figure 1. The ¢ and 7 orbitals for two sp-valent atoms ¢ and j.
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Figure 1 displays schematically the o and & orbitals for two sp-valent atoms 7 and j.
The o orbitals can be thought of as a generalization of the familiar sp*-hybrid orbital to
which they reduce for the special case of p, = ppo/|ss¢| = 3. We note that the above
hybrid orbitals are independent of the environment about the bond. For spe = /Tsso’|ppo
they represent an exact transformation of (6) into the more transparent form of (13).

The bond order, which is given by the difference between the number of electrons in
bonding and anti-bonding states, can be written as

@/ (Ep) =Nt =N~ = —%3 [G (E) — Gg(E) dE 14

where for simplicity the orbital labels have been left out. The bonding and anti-bonding
Green functions can be written as a continued fraction (Haydock et el 1972, Haydock 1980),
namely

1
Goo(E) = (U3 I(E — HY 'uF) = 5 (15)
E—af - ‘ 3
E—a,*— E—azI - ..

where [uf) = J5lic £ jB). The coefficients are determined by the Lanczos algorithm,
namely

BE ek ) = Hlul) — aXlul) - b*|u 0 (16)

with the boundary condition that Iu_[) = (. The dependence of the recursion coefficients
on the local atomic environment about the bond if can be found by using the well known
relationship between the recursion coefficients and the moments (see for example Pettifor
and Aoki (1991), equations (2,10~(2.15)).

3. The many atom expansion

Recently Aoki and Pettifor {1993) have shown that the bond order can be written as an exact
many-atom expansion._ They considered acting with the Lanczos algorithm on the starting
orbital |u3) = (i} +e¥|j )/+/2 where 6 = cos™! A. The corresponding Green function

Gho(E) = Wl(E — H)™'u}) = GY(E) + AGU(E) (17

can, therefore, be written as a continued fraction like {15) with recursion coefficients a,’;
and b}, It follows from (17) that G}, is linear with tespect to A so that

. dG X, [ 4G aGj,
G”(E)=(d—;°)o=z_;( aagﬂ) da +}:( ab*) (18)

Sa, = (daj /dA)y and  8b, = (db}/dA) (19)

with (...} denoting A = 0.

In this paper we will consider only those structures which have even-membered rings
so that all odd moments vanish provided we take the sp energy separation Eg, to be zero.
This implies that b, = 0 (see equations (22)~(235) of Aoki and Pettifor 1993). Substituting
(18) in (5) and keeping only sufficient terms in the expansion to guarantee up to the correct

where
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fourth-moment g, (cf section 3.2 of Acki et al 1993a), the bond order for a particular bond
is given by

OEr) = 2| xa(Er)a + xs(ERIE™ - 63/ @0
where the response functions xa.+2(Er) are defined by
1. (5 :
Xant2(Ep) = ;3 Gon(EYGuo(E) dE (21)

and & = 8ap and (Z{" — £2)/(B%)* = 8a,. Analytic expressions for x2 and x4 are given in
the appendix within the SFMA. {; corresponds to the appropriate bond integral {ic|H|ja)
and £, is the corresponding four-atom ring contribution which for sp-valent systems has
been given explicity by equations (50) and (52) of Pettifor and Aoki (1992), The coefficient
b? equals b}=C and is given by the average second moment about sites i and j, namely
(B0 = pg = LGIHYD + GIHD). @2)

o

4. A sum rule

The truncation of the many-atom expansion after just the first few terms may result in
the violation of (4) which gives the relation between the on-site Green function Gloie
and intersite Green functions G/, On making the above truncation, therefore, we will
constrain our choice of terminator (repre:»:f:lit{ad= by the unknown coefficients a,, and by, in
the square root terminator that enters in the response functions in the appendix) so that the
identity is maintained for the particular choice of energy E == E™® (Aoki et al 1993a, b},
namely

i+ ) Hergitie(ge 4 i0) =0. 23)

JB.J#E .

This guarantees that the number of electrons N'® is calculated consistently within the
approximations made. By taking the imaginary part of (4} we find that the local density of
states for an orbital on atom i can be expressed in terms of the intersite Green functions as

n(E) =(E - E*)7! ( ) > H'wﬁf:sc;-fﬂ'“(fz +i0) (E # E®), (24)
. ) B
Here we see that the condition
> HiebyGHe(E 1 i0) =0 (25
iB#

must be fulfilled in order to avoid an unphysical singularity in #*(E) at £ = E'* which
would bring a logarithmic singularity in the number of electrons N* as a function of the
Fermi level Ep. Equation (25) constitutes the imaginary part of (23). Since the integration
of n*“(E) up to infinity must give unity, namely

o 1 ® 3GHE(E 430
1=y B~ Pf SCTHELD) g (26)
BT %) Jo E-E®
we find a sum rule using the Kramers—Kronig relation as
14 > H™PRGiFi(E™ 1 i0) =0 @n

IBJ#
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where i stands for the real part and this constitutes the real part of (23).

If we assume that the atomic energy levels are orbital independent (corresponding to
Egy = 0), then we find from a similar argument with respect to the total number of electrons
on atom { that the sum rule may be written

S+ Y HEEGHEg) =0 (28)
o« Joft jE
where £ has been taken as the energy zero. It should be noted that this formula is invariant
under the rotation of the quantization axes (or unitary transformation) for local orbita'ls o
and B on each pair of atoms { and j. Therefore, choosing the orbitals such that H™/# is
diagonalized, the sum rule takes the form of
Y i+ ) HRGI(0) = 0. ‘ (29)
o Joe J3E
By taking the real and imaginary part of (29) we can make use of this sum rule to fix the
WO parameters doo and beo in the square root terminator to the approximate intersite Green
functions.
For a system of identical s-valent atoms, the sum rule simplifies to
1+ HYGH(i0) =0 (30)
Jett
For structures with no odd-member rings the truncated intersite Green function automatically
fulfils the imaginary part of the sum rule (30) as IG¥ (i0) = 0 by symmetry of the bonding
and aati-bonding density of states; only the real part remains to be fulfilled.

5. s-valent systems

In this section we use the sum rule to study simple s-bonded structures with even membered
rings only. We use the square root terminator with b3 = b9 = ... = beo. Substitution of
(18) into the sum rule (27) requires the following terms:

RGO Goo(O)] = —b3,/(BD)* (31)
R(Goo (@G 1] =0 (32)
R(Go1 (0)G (O] = 1/(6))* (33)

which have been evaluated using some simple algebra within the SEMA (Aoki et af 1993b).
The sum rule, therefore, takes the form

I_ZHif[bz [f"g cr]}—‘:z— 34
= < o0 2 (b?)4
where the individual terms inside the sum are dependent on the particular bond ij. For the
case of s orbitals on a lattice where all sites are equivalent (34) is satisfied for

rmg _ ;.
bl = A——2 + (B (35)

&2

The nght-hand side of this equation, however, is simply (53)? where 53 is the recursion
coefficient 55~ which may be defined (Pettifor and Aoki 1991) in terms of the exact average
second and fourth moments, namely

L Le-g

(B2 = (s — )z =
&2

e N () (36)
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Thus the sum rule implies that we must choose our terminator so that by, = b3 where 5}
is the exact recursion coefficient 55=0. At this fourth-moment level of approximation we
include in the average Green function information about the shape of the band, because
(b3/59)? is a measure of the ratio of the fourth and the second moments of the density of
states. As (#3/6%)% becomes larger than unity the band develops a distinct maximum at
its centre. If #? equals 59 we have a semi-elliptic band and as (43/5%)? becomes smaller
than unity a pseudo-gap develops in the centre of the band -and increasingly more weight is
pushed towards the band edges. At (53/b%)? = 1 the band has a singularity at the band edge
and below this value é-functions occur outside the continuum band of states. In the most
extreme case, when 59 vanishes, as for the dimer, the continuum band of states vanishes
and we are left with the two §-functions.

We now apply the bond order potentials to study a few simple s-bonded structures with
only even membered rings. The structures we investigate are: the dimer, the linear chain,
the diamond lattice, the two-dimensional square lattice, the simple cubic lattice and the BCC
lattice. Within the fourth-moment approximation and with only nearest-neighbour hopping
it follows from equations (6) and (20) that the nonmalized bond energy per atom for the
above s-valent lattices can be written

U b = [22(62/8%, Na) + 2a (83785, No)I(83/89)* — 11} . (37)

1.2 = .

~ « exuct
So Wy=2 s BOP

1.0 4,7 >
}0.8 "
o)

0.6

a.4 . L

o . 1 2 3

( bo: /bof}‘

Figure 2. The normalized bond energy versus the normalized fowrth moment for different
approximations within the s-valent bond order potentials for a half-full band. The dotted, solid
and dashed lines correspond to evaluating the normalized response functions with the constant
value of b/HY = 0.5. 1 and 2, respectively whereas the open diamonds use the correct structure
dependent value of b3/b". The solid squares give the exact T8 results from Brown and Carlsson
(1985). In this and the following fipure the letters indicate the structure: (2) dimer, (b) linear
chain, (¢) diamond structure, (d) two-dimensional square lattice, () simple cubic structure and
{g) body-centred cubic lattice.

The reduced susceptibilities $2,:7 = [59|x2.42 are functions only of (63/b]) and the
fractional occupancy of the band N,, since the terminator by, has been chosen equal to b‘z’
in order 1o satisfy the sum rule, (30). Note that (b9)* = 3 and (b3/b0)% = pafu3 — 1 from
equations (22) and (36). Figure 2 displays the dependence of the normalized bond energy
per atom U®™/b? on the normalized fourth moment (53/b%)? for the case of a half-full band
with N, = 0.5, Such a figure was first constructed by Brown and Carlsson (1985) whose
exact values for the TB bond energies for the different lattices are indicated by the solid
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squares. The three lines in figure 2 show the linear dependence to be expected from (37)
if the reduced susceptibilities are assumed to be structure independent by taking %2 and ¥
as constants. The particular choices (63/b%)2 = 0.5, 1.0 and 2.0 have been plotted. Using
the correct values of #5/5% in the response functions (the diamond symbols in figure 2)
gives excellent bond energies for the different structures considered. Moreover, we find
that truncating the intersite many-atom expansion at the fourth moment and using the sum
rule to fix by, gives the same results as the central site method taken to the fourth-moment
level of Brown and Carison (1985) (Aoki ef al 1993b). Within the SFMA the exact TB results
are obtained for the diatomic molecule and the linear chain. Figure 3 demonstrates that this
convergence of the bond order potential (BOP) expansion is equally good for band fillings
away from half-full, notably N, = 0.1, 0.2 and 0.3,

1.0
- N=0.5
. - « N=0.3
- “ T A = N,=0.2
08t b ¢ d at N,=0.1
- » H a ¥ e .
< ols v
gtl’.t‘:‘ - . b 5 e s
=
0.4 ¢ L. a
A
A
0.2 .
o) H 2 3
(bu”/bn’)z

Figure 3. The normalized bond energy versus the normmatized fourth-moment for different band
fillings for s-valent systems. The exact T8 results are taken from Brown and Carlsson (1985).

Finally, we have studied the behaviour of the BOP as compared to the central-site
recursion method with respect to defect formation. We do this by evaluating the formation
energies for the creation of a vacancy or a surface in some of the structures analysed above.
The bond energy contribution to the formation energy is defined as the difference between
the bond energy of the defected structure and the bond energy of a perfect structure with
the same number of atoms. Figure 4 shows the bond energy contributions to the defect
formation energies normalized by the magnitude of the nearest-neighbour hopping integral
# for a half-full band and for a band filling of N, = 0.3. The very satisfactory agreement
between the two methods is also found for other band fillings.

6. sp-valent systems

In this section we study the structural stability of sp-valent systems with respect to the
simple cubic, diamond and two-dimensional graphite structures. All these structures have
no odd member rings which implies that the density of states is symmetric if we assume
zero sp splitting, namely Eg = 0.

The choice of the coefficients in the terminator is determined by the sum rule as follows.
Since the ¢ and & bands have the same width we take 0% = b0" = by,. Keeping only

by and )" in the response functions and choosing all remaining recursion coefficients
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1.2
1.0

0.8

5/h

0.6

0.4

0.2

e = R A e o e e b o]

0.0

ABC DE FCH ABC DE FCH

Figure 4. The normalized defect energies of s-valent systems with h=—sse as calculated from
the Bor (solid rectangles) and from the central site recursion method {open rectangles) for
different band fillings. The letters indicate the following defects: A the vacancy, B the (10)
surface and C the (11) surface in the two-dimensional square lattice; D the vacancy and E the
(100) surface in the diamond structure; F the vacancy, G the (100) surface and H the (110}
surface in the simple cubic structure.

equal to by, would lead to a value of b, much smaller than bo” and boIr when the sum
rule is applied. This gives non-physical delta functions outside the band edges Therefore,
in order to avoid this we have chosen the square root terminator through bg 7= bo"" =by
and b3 = b5 = 0" = b3 = ... = by, Where be, takes the form (Acki 1993)

b2, = (B} + E%)/z. B (38)
The average by is chosen as that value of by, which satisfies the sum rule if the many-atom

expansion is truncated after the first tern and the response function x; has all recursion
coefficients equal. It is given by

= @/2)/[@5 1YY + 26 /6] (39)
where z is the nearest neighbours or coordination number. &, is then found by satisfying
the sum rule within the SFMA, namely

4 [ (45)° »? L @E5?
.2b2 (b")“' +2(b’|7)4
4 g™ e g - e
{z + Tk +2 7 (B2 +52) =0. (40)
This leads to
b} = (~B +(B* —4AC)"H/(24) : @D
where ' )
@5)? ©5)*
A=2 2 42
[(b‘,’"’)‘ ey ‘ )

ring.o 4 [ 3 TETT 3
G = @Y ™ (52)1} 3

B=-14
{/ Ty T oy
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and
C = Bbi. (44)

Therefore, the SFMA requires the calculation of the second moments entering bf‘“ and the
evaluation of all four of the four-member rings around a given bond. This calculation is
a particularly simple task for diamond and graphite structures since both structures do not
have any four-member rings within the nearest-neighbour approximation.

We now compare the results obtained within the SFMA when the sum rule is satisfied,
with that when it is not applied, and compare both to more accurate results which
we have obtained by retaining 20 exact levels around a given bond in the continued
fraction, equation (15). We have taken Chadi’s values of p, = ppo/isso| = 1.5738 and
P = Ipp|/lsse| = 0.5547 (Chadi 1979). Following Cressoni and Pettifor (1991) the o
and & bond integrals are assumed to display the same functional dependence on interatomic
distance, namely

pp Pr
where R;; is the distance between the two atoms / and j. For lattices considered here where

all neighbour bonds are equal in length the coefficient 5? takes a particularly simple form.
For the o bond between the hybrid orbitals {ig) and |jo) we have (Pettifor 1990)

GNP =1+ Y 28 (46)
ki, j
where & is a nearest neighbour to atom i, 6, is the corresponding bond angle and
&y = —~(1 4 ps)h(R;;). The embedding function is given by

(43)

8o (8) = (1 + ps c0s6)*/(1 + ps)? + po pf sin> 6 /(1 + po)°. “7)
Similarly for the non-bonding & state between the hybrid orbitals [iop} and |jop) we have

1P =Y gulB) (48)

ki :
with
pa(l —cos®)?  p2sin®é
00 (B} = z . 49

80 = T YU+ po “9)
For the » bond we have _

GBI =1+ Y ga(60) (50)

kAL

where

8x(65) = 3L(pa/P*7)(1 + pg) sin® 0 + (1 + cos? §)] (51)

and §f = —p,h(R;;).

Figure 5 illustrates the angular dependence of the embedding function g,{#) and g.{8).
The pure s bond corresponds to p,=0 and displays no angular dependence. The pure p bond
corresponds to vanishing sso. We see that g,(8) falls to zero for a bond angle 90° for the
case pr = 0 since then there will be no coupling to neighbouring atoms at right angles to
the bond. The sp hybrid bond displays very small values when 8 becomes larger than about
100°. For Chadi’s parameters it has a minimum around 130° as expected from the behaviour
of the hybrid orbitals, shown in figure 1, which have very little weight in this direction.
Therefore graphite and diamond lattices with bond angles of 120° and 109°, respectively
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8 :
1.0
£5(9) 8:(9), ]
T 05
R — 0 '
0 90 180 0 90 180
Bond Angle (0) Bond Angle (0)

Figure 5. The angular dependence of the'embedding functions g,(2) and the g(f). The
normalized semi-empirical Tersoff (1988} curve is aiso shown.

will have nearly saturated o bonds with bond orders close to unity for a half-full band. In
contrast the angular dependence of the & bond leads to unsaturated behaviour, as can be
seen in figure 5, since g, () rises to a value much larger than that for anguiarly independent
s orbitals. We see that the angular dependence of g.(8) is very similar to that displayed by
the semi-empirical potential of Tersoff (1988) (see Pettifor and Acki 1992). Table 1 gives
the normalized sp valent recursion coefficients calculated for the three structures diamond,
graphite and simple cubic. The values of £} "> and the ratio of (B,/b"") are also included.
As expected, table 1 shows that the normalized recursion coefficients b?"’ /&5 are very small
for the graphite and diamond lattices whereas the normalized b?"’ /&5 take a large value in
ali structures.

Table 1. The normalized sp-valent recursion coefficients for the three structures diamond,

graphite and simple cubic.
) Stuetwre  B)7/2f Bajty o™ Bt}
" Diamond  1.0854 0.7344  0.00 0.677
Graphite ~ 1.0277 0.7380  0.00 0.718
sC 1.3293 12810 —6.81K%(Ry;) 0964
Structwre B0 AR Baypef pDET by /b
Diamond  4.4966 3.407  0.00 0.758
Graphite ~ 3.4818 3424 0.0 0983
sc 55072 59462 —6.24R*(R;) 1079
Stwuctre ' B\/z8  Bojpg g Ba/by
Diamond  1.1468 07344 000 0.640
Graphite ~ 1.0469 07380 000 0.705
sc 1.4045 12810 -2.624°%(Ry) 0812

Figure 6 illustrates the reduced response functions x: and ¥4 as a function of the number
of electrons per atom in the appropriate ¢ and x orbitals for the diamond, graphite and
simple cubic structures within the SFMA when the sum rule is satisfied.



5806 P Alinaghian et al

08 g 04 .
—— gra 2 /
hg === 8C . R AT f- o
x 5 - . 4 ~ \\ //z
03t [/ S22 N\ 00 = :
;. N N i
2 \‘
,.' \\ J
00 L 04 ’
0 i z { 2
N, N,
0.6 r T 0.4 T
AT //;';'_"T,_?\ AT /‘-.\\ //}
2 ," \ 4 . A\ 7 .o/
03 s AT a.0 ) 7
N j.f
:’ ‘\ \\\/
A N =
i u
X . = -0.4 L
00 0 1 2 4 7 2
N, N,

Figure 6. The reduced response functions %2 and ¥ as a function of the number of elecirons
per atom in the appropriate & and s orbitals for the sp-valent diamond, graphite and simple
cubic Jattices within the sFMA when the sum mile is satisfied.

Figure 7 illustrates the corresponding bond order from (20). The left-hand panels
correspond to evaluating the response functions when the sum rule is not applied by using
b?"” = bg“’ = ... = by, whereas the middle panels correspond to choosing the terminator in
order to satisfy the sum rule. The right-hand panels exhibit the results obtained within the
intersite method (15), calculated with 20 exact levels about the bond j. The SFMA predicts
a negative o bond order in small regions at the start and end of the band filling. This is
due to the truncation of the many atom expansion. It should be noted that the oscillations
in the lower right hand pane! for ®, for diamond and graphite lattices are probably due
to using the simple square root terminator rather than the sophisticated Turchi terminator
appropriate for densities of states with a gap (Turchi et @/ 1982) . We see that, as expected,
for a half-full band the o bond order for graphite and diamond is nearly unity whereas that
for the = bond is much less than unity.

Figure 8 displays the density of states for diamond, graphite and simple cubic lattices
using the integrand in (55} within the SFMA when the sum rule is not applied (left-hand
panels} and when the sum rule is satisfied (right-hand panels). The ratio (52/&?) determines
the shape of the density of states. When this ratio is less than unity, for example in case of
the ¢ bond in the diamond and graphite structure, there is bimodal behaviour. As (Ezlb?)
approaches unity the bimodal behaviour disappears, as can be seen for the ¢ bond in the
simple cubic lattice (cf table 1). In the left-hand panels (Bsz‘l’) = 1 for all structures so
that all structures have semi-eiliptic bands.

The relative structural stability of simple cubic, diamond and graphite lattices was

predicted using the structural energy difference theorem (Pettifor 1986). This states that (o
the first order
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Figure 7. The o and & bond orders for the sp-valent diamond, graphite and simple cubic
lattices. The left-hand panels correspond to evaluating the response functions without the sum
rule constraint. The middle panels correspond to choosing the terminator to satisfy the sum rule,
and the right hand panels display the resuits obtained within the intersite method calculated to
20 exact levels about a given bond.

AU = [AUbona) Alpp=0 (52)

where AlUp=0 sighifies that the bond lengths in each structure have been adjusted so
that the change in the repulsive energy from one structure to another is zero, The
repulsive energy is taken to be proportional to #2(R;;). This assumption allows us to write
AU = [AUpond] ap,=0 Where iz is the second moment of the density of states (see Pettifor
and Podloucky 1984, Cressoni and Pettifor 1991). Thus we set the second moment of the
density of states for each structure to be the same. Within the first nearest-neighbour model
this implies that 6A2(Ri;)s = 4h*(Rij)aia = 3R (Rij)gra. We take R(Ryj)se = ~—s505 = L.

Figure 9 displays the ¢ and 7 bond energies as a function of the total number of
electrons per atom within the SFMA when sum rule is not applied (left-hand panels) and
when it is satisfied (right-hand panels). It can be seen that the o bond energy is much larger
-than the & bond energy.

Figure 10 shows the relative structural trends between graphite, diamond and simple
cubic lattices within the SFMA when the sum rule is not applied (left-hand panel), when it
is satisfied (middle panel) and within the intersite method calculated with 20 exact levels
{right-hand panel). All these calculations show the same structural trend, namely, in the
half full band region diamond is the most stable structure, whereas with increasing band
filling graphite and then simple cubic become more stable. This is to be expected within
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the fourth-moment approximation as has been argued by Cressoni and Pettifor (1991) who
also considered other structure types in their detailed comparison of TB predictions with
experimental structural trends across the sp-valent elements in the periodic table. We see
from figure 10 that for half-full bands the SFMA predicts a band energy that is within 2%
of the converged result when the sum rule is satisfied, whereas not applying the sum rule
leads to a much poorer result with 13% error.

7. Conclusions

We have examined the relative structural stability of s- and sp-valent lattices using the
bond order potentials within the SFMA. We have shown that the results of the SFMA with
the sum rule satisfied are comparable with accurate TB results and predict the expected
structural trend from simple cubic — graphite — diamond —» graphite — simple cubic
as a function of the band filling if the relative stability of only these three structure types
is considered. We are currently extending these calculations to treating the Eg, # 0 case
when the asymmetry of the response functions needs to be included. This will allow a more
realistic modelling of sp-valent systems such as carbon and silicon.
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Figure 10. The relative structural trend between sp-valent diamond, graphite and simple cubic
lattices within the sPMa when the sum rule is not applied (the left-hand panel), when it is satisfied
(the middie pancl) and within the intersite method calculated with 20 exact levels around a given
bond (the right-hand pagel).
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Appendix

Aoki (1991) has derived analytic expressions for the response functions. Within the SFMA
x2 and x4 are given by

x2(er) = (BIB3/32beem [ 3(1 — B3)vsler) + £ (BTB2/2 — B2 + B3)ui (ep)] (53)
xa(er) = (BEBE/32boom)[1(1 - B2/2)v3(er) — (BT /161 (sp)] 54

where £ = E/2b,, and 8, = b,?/bm and the recursion coefficients b, have been chosen to
be negative. The number of valence electrons per spin per atom, N{(< 1), is in the form

Ly
N = #%@53 (55)
T
where
e g T2
Vp(8F) = f —722(7(18 (56)
v JT=F
uglep) = f’ Wda (57)
with
fle) = (*/4)1 — B) + (£*/16) (8 + B1 B3 — 2B]) + (B1/64) (58)
References

Acki M 1991 private communication

—— 1993 private communication

Aoki M and Pettifor D G 1993 Physics of Transition Metals ed P M Oppeneer and J Kiibler (Singapore: World
Scientific) p 299

Acki M, Gambsch P and Pettifor D G 1993a Proc. of 15th Teniguchi Symp. to be published in Springer Proc.
Phys.

—— 1993b Proc. 2nd int. Conf. on Computer Appiications to Materials and Molecular Science and Engineering—
CAMSE ed M Doyama (Amsterdam: Elsevier) to be published

Baskes M I, Nelson J S and Wright A F 1989 Phys. Rev. B 40 6085

Brown R H and Carisson A E 1985 Phys. Rev. B 32 6125

Chadi D ] 1979 J. Vuc. Sci. Technol. 16 1290

Cressoni J C and Peutifor D G 1991 J. Phys.: Condens. Matter 3 495

Daw M S and Baskes M | 1984 Phys. Rev. B 29 6443

Daw M S and Schliiter M A (ed) 1990 Atomic Scale Calculations of Structure in Material (Pittsburgh, PA: Materials
Research Society)

Finnis M W, Paxton T, Pettifor D G, Sutton A P and Ohta Y 1988 Phil. Mag. A 58 143

Finnis M W and Sinclair ] E 1984 Phil. Mag. A 50 45

Haydock R 1980 Solid Stute Physics vol 35 (New York: Academic) p 216

Haydock R, Heine V and Kelly M J 1972 J. Phys. C: Solid State Phys. 5 2845

Pettifor D G 1986 J. Phys. C: Solid State Phys. 19 285

—— 1989 Phys. Rev. Lett. 63 2480

—— 1990 Springer Proc. Phys. 48 64

Pettifor D G and Aoki M 1991 Phil. Trars. Roval Soc. (London) A 334 439

— 1992 Structure and Phase Stability of Afloys ed J L Moran-Lopez, F Mejia-lira and J M Sanchez (New York:
Plenum) p 119

Pettifor D G and Podloucky R 1984 Phys. Rev. Let. 53 1080

Siater ] C and Koster G F 1954 Phys. Rev. 94 1498

Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262

Sutton A P, Finnis M W, Pettifor D G and Ohta Y 1988 J. Phys. C: Solid State Phys, 21 35

Tersoff J 1988 Phys. Rev. B 38 9902

Turchi P, Ducastelle F and Treglia G 1982 J. Phys. C: Solid State Phys. 15 2891

Vitek V and Srolovitz D ] {ed) 1989 Atomistic Simulation of Materials (New York: Plenum)



